(perturbed-lagrange-multiplier-method)= # Perturbed Lagrange-multiplier method ## Functional Form In the previous sections we introduced the strong form of general mixed formulation for small and finite strain and by considering test functions $(\bm v, q)$ as derived in {eq}`mixed-linear-weak-form` and {eq}`mixed-hyperelastic-weak-form-initial`. Alternatively, we can derive the mixed $\bm u- p$ weak formulation based on minimization of two fields functional $\Pi(\bm u, p)$, which it is known as the perturbed Lagrangian approach. For the mixed linear case, we can write $$ \begin{aligned} \Pi (\bm u, p) &= \int_{\Omega} \left[ \mu \, \bm \varepsilon_{\text{dev}} \tcolon \bm \varepsilon_{\text{dev}} - p\, \trace \bm \varepsilon + \frac{\bulk_p}{2} \left(\trace \bm \varepsilon \right)^2 - \frac{p^2}{2 (\bulk-\bulk_p)} \right] \, dv - \Pi_{\text{ext}} (\bm u) \\ \Pi_{\text{ext}} (\bm u) &= \int_{\Omega}{\bm{u} \cdot \rho \bm{g}} \, dv + \int_{\partial \Omega}{\bm{u} \cdot \bar{\bm{t}}} \, da \end{aligned} $$ (mixed-linear-functional) and by invoking the stationarity of $\Pi$ with respect to $\bm u$ and $p$, we obtain $$ \begin{aligned} \int_{\Omega} \nabla \delta \bm u \tcolon \left[ 2 \mu \, \bm \varepsilon_{\text{dev}} + \left(\bulk_p \trace \bm \varepsilon - p \right) \bm{I} \right] \, dv - \bm L_{\text{ext}}(\delta \bm u) &=0, \\ \int_{\Omega} \delta p \left( -\trace \bm \varepsilon - \frac{p}{\bulk-\bulk_p} \right) \, dv &= 0, \end{aligned} $$ (mixed-linear-weak-form-PL) where $\bm L_{\text{ext}}(\delta \bm u) = \int_{\Omega}{\delta \bm{u} \cdot \rho \bm{g}} \, dv + \int_{\partial \Omega}{\delta \bm{u} \cdot \bar{\bm{t}}} \, da$, and $\delta \bm u$ and $\delta p$ are virtual displacement and pressure and can be seen as the test functions $\bm v, q$, i.e., $\delta \bm u = \bm v, \, \delta p = q$. It is clear that the weak form {eq}`mixed-linear-weak-form-PL` agrees with what we obtained in {eq}`mixed-linear-weak-form`. However, the hyperelastic weak form {eq}`mixed-hyperelastic-weak-form-initial`, can not be derived by minimizing any functional and its linearization is not symmetric. To write the mixed functional $\Pi(\bm u, p)$ for hyperelastic, we need to consider the strain energy of the form $$ \psi \left(\bm{C} \right) = \psi_{\text{vol}}(J) + \psi_{\text{iso}}(\bar{\bm{C}}) = \frac{\bulk}{2} \left(U(J)\right)^2 + \psi_{\text{iso}}(\bar{\bm{C}}) $$ (mixed-strain-energy-PL) we can write a two fields energy functional as $$ \begin{aligned} \Pi (\bm u, p) &= \int_{\Omega_0} \left[ \psi_{\text{iso}}(\bar{\bm{C}}) - p \, U(J) - \frac{1}{2}\frac{p^2}{\bulk - \bulk_p} + \frac{\bulk_p}{2} U^2\right] \, dV - \Pi_{\text{ext}} (\bm u) \\ \Pi_{\text{ext}} (\bm u) &= \int_{\Omega_0}{\bm{u} \cdot \rho_0 \bm{g}} \, dV + \int_{\partial \Omega_0}{\bm{u} \cdot \bar{\bm{t}}} \, dA \end{aligned} $$ (mixed-energy-functional) Finding the stationary conditions with respect to $\bm{u}$ and $p$ by taking Gateaux derivative gives the weak form $$ \begin{aligned} \int_{\Omega_0} \bm F \underbrace{\left( \bm{S}_{\text{iso}} + (\bulk_p U - p) \, J \, U' \, \bm{C}^{-1} \right)}_{\bm S} \tcolon \nabla_X \bm v \, dV &= L_{\text{ext}} (\bm v) \\ \int_{\Omega_0} \left(- U(J) - \frac{p}{\bulk - \bulk_p} \right) q \, dV &= 0 \end{aligned} $$ (mixed-hyperelastic-weak-form-initial-PL) where, $L_{\text{ext}} (\bm v) = \int_{\Omega_0}{\bm{v} \cdot \rho_0 \bm{g}} \, dV + \int_{\partial \Omega_0}{\bm{v} \cdot \bar{\bm{t}}} \, dA $ and we have used $$ \begin{aligned} \frac{\partial \psi_{\text{iso}}}{\partial \bm u} \cdot {\delta \bm u} &= \frac{\partial \psi_{\text{iso}}}{\partial \bm E} \tcolon \frac{\partial \bm E}{ \partial \bm u}{\delta \bm u} = \bm{S}_{\text{iso}} \tcolon {\delta \bm E} = \bm{S}_{\text{iso}} \tcolon \text{sym} \left(\bm F^T \delta \bm F \right) \\ \frac{\partial U}{\partial \bm u} \cdot {\delta \bm u} &= \frac{\partial U}{\partial J} \frac{\partial J}{\partial \bm u} {\delta \bm u} = U' {\delta J} = J \, U' \, \bm{C}^{-1} \tcolon \tcolon {\delta \bm E} = J \, U' \, \bm{C}^{-1} \tcolon \text{sym} \left(\bm F^T \delta \bm F \right) \end{aligned} $$ where $\delta \bm{F} = \nabla_X \delta \bm u = \nabla_X \bm v$. The Jacobian for problem {eq}`mixed-hyperelastic-weak-form-initial-PL` can be written as $$ \begin{aligned} \int_{\Omega_0} \nabla_X \bm{v} \tcolon \left(\bm F \diff \bm{S} + \diff \bm{F} \bm{S} \right) dV &= -R_u^{PL}, \\ \int_{\Omega_0} q \left( -\diff U - \frac{\diff p}{\bulk - \bulk_p} \right) dV &= -R_p^{PL}, \end{aligned} $$ (mixed-jacobian-weak-form-initial-PL) where $$ \begin{aligned} \diff \bm{S} &= \diff \bm{S}_{\text{iso}} + \diff \bm{S}_{\text{vol}}^u + \diff \bm{S}_{\text{vol}}^p, \\ \diff \bm{S}_{\text{vol}}^u &= \left(\bulk_p U' \diff J \right) J U' \bm{C}^{-1} + \left(\bulk_p U - p \right) \left(\diff J \, U' \bm{C}^{-1} + J\, U^{''} \diff J \bm{C}^{-1} + J U' \diff \bm{C}^{-1} \right), \\ &= \left[\bulk_p \left( J U' \right)^2 + \left(\bulk_p U - p \right) \left( J U' + J^2 U^{''} \right) \right] \left( \bm{C}^{-1} \tcolon \diff \bm E \right) \bm{C}^{-1} \\ &+ \left(\bulk_p U - p \right) J U' \, \diff \bm{C}^{-1}\\ \diff \bm{S}_{\text{vol}}^p &= - dp J U' \, \bm{C}^{-1} \\ \diff U &= U' \diff J = J \, U' \, \bm{C}^{-1} \tcolon \diff \bm E, \end{aligned} $$ (mixed-stationary-point-linearization) where $\diff \bm{S}_{\text{iso}}$ is derived for neo-Hookean, Mooney-Rivlin and Ogden in {eq}`dS-iso-neo-hookean`, {eq}`dS-iso-mooney-rivlin` and {eq}`dS-iso-ogden`. To complete the derivation we only need $U(J)$ function with condition $$ U(J) = 0 \quad \text{if and only if} \quad J = 1. $$ For the volumetric strain energy function of the form given in {eq}`mixed-neo-hookean-energy`, if we choose $V(J) = \frac{1}{4} \left(J^2 - 1 - 2 \log J \right)$, from $\bulk V(J) = \frac{\bulk}{2} U^2(J)$, we will have $$ U(J) = \pm \sqrt{2 V} = \frac{\sign(J-1)}{\sqrt{2}} ( \underbrace{J^2 - 1 - 2 \log J }_{A})^{1/2} $$ where the derivatives are $$ \begin{aligned} U' &= \frac{\partial U}{\partial J} = \sign(J-1) \frac{J^2 - 1}{J \sqrt{2}} A^{-1/2}, \\ U{''} &= \frac{\partial^2 U}{\partial J^2} = \sign(J-1) \frac{1}{J^2 \sqrt{2}} \left((J^2 + 1) A^{-1/2} - (J^2 - 1)^2 A^{-3/2} \right). \end{aligned} $$ ## Command-line interface To enable the perturbed Lagrange model, use the model option `-model elasticity-mixed-neo-hookean-PL-current` or `-model elasticity-mixed-neo-hookean-PL-initial` and set the material parameters listed in {ref}`perturbed-lagrange-options`. Any parameter without a default option is required. (perturbed-lagrange-options)= :::{list-table} Perturbed Lagrange-multiplier model options :header-rows: 1 :widths: 30 55 15 * - Option - Description - Default value * - `-model elasticity-mixed-neo-hookean-PL-current | elasticity-mixed-neo-hookean-PL-initial` - Required to enable the perturbed Lagrange model, `|` denotes an option for the user. - * - `-E [real]` - [Young's modulus](https://en.wikipedia.org/wiki/Young%27s_modulus), $E > 0$ - * - `-nu [real]` - [Poisson's ratio](https://en.wikipedia.org/wiki/Poisson%27s_ratio), $\nu \leq 0.5$. - * - `-nu_primal [real]` - Primal part of the Poisson's ratio for Jacobian operator, $-1 \leq \nu_p < \nu \leq 0.5$. This parameter may improve solver performance and should not affect the solution. - `-1.0` * - `-nu_primal_pc [real]` - Primal part of the Poisson's ratio for preconditioner operator, $-1 \leq \nu_{pc} < \nu \leq 0.5$. This parameter may improve solver performance and should not affect the solution. - `-nu_primal` value ::: An example using the pertrubed Lagrange model can be run via ```console $ ./bin/ratel-quasistatic -options_file examples/ymls/ex01-static-elasticity-mixed-neo-hookean-PL-current-pcjacobi.yml ```