Linear elastic

Constitutive theory

One can see from the equations in the Linear elastic that as \(\firstlame \to \infty\), it is necessary that \(\nabla\cdot \bm{u} \longrightarrow 0\) which gives an idea of alternative strategies. One approach is to define an auxiliary variable \(p\), and rewrite constitutive equation (77) as

(148)\[ \begin{aligned} \bm \sigma(\bm u, p) &= -p \, \bm{I} + 2 \mu \bm \varepsilon, \\ p &= - \firstlame \trace \bm \varepsilon. \end{aligned} \]

Alternatively, we can use the definition of hydrostatic pressure i.e., \(p_{\text{hyd}} = - \frac{\trace \bm \sigma}{3}\) and arrive at

(149)\[ \begin{aligned} \bm \sigma(\bm u, p_{\text{hyd}}) &= -p_{\text{hyd}} \, \bm{I} + 2 \mu \bm \varepsilon_{\text{dev}}, \\ p_{\text{hyd}} &= -\bulk \trace \bm \varepsilon. \end{aligned} \]

where \(\bm \varepsilon_{\text{dev}} = \bm \varepsilon - \frac{1}{3} \trace \bm \varepsilon ~ \bm{I}\) is the deviatoric part of the linear strain tensor and \(\bulk\) is the bulk modulus. We present a general constitutive equation as

(150)\[ \begin{aligned} \bm \sigma(\bm u, p) &= \left(\bulk_p \trace \bm \varepsilon -p \right) \bm{I} + 2 \mu \bm \varepsilon_{\text{dev}}, \\ p &= -\left(\bulk - \bulk_p \right) \trace \bm \varepsilon. \end{aligned} \]

where

(151)\[ \bulk_p = \frac{2 \mu \left(1 + \nu_p \right)}{3 \left(1 - 2 \nu_p \right)}, \]

is the primal portion of the bulk modulus, defined in terms of \(\nu_p\) with \(-1 \leq \nu_p < \nu\), where \(\nu\) is the physical Poisson’s ratio. The standard full-train formulation (148) is obtained using \(\nu_p = 0\), and the deviatoric formulation (149) with \(\nu_p = -1\).

Strong and weak formulations

The boundary-value problem (Strong form) for constitutive equation (150) may be stated as follows: Given body force \(\rho \bm g\), Dirichlet boundary \(\bar{\bm u}\) and applied traction \(\bar{\bm t}\), find the displacement and pressure-like variables \((\bm u, p) \in \mathcal{V} \times \mathcal{Q} \) (here \(\mathcal{V} = H^1(\Omega), \mathcal{Q} = L^2(\Omega) \) ), such that:

(152)\[ \begin{aligned} -\nabla \cdot \bm \sigma - \rho \bm g &= 0, \qquad \text{in $\Omega$} \\ -\nabla\cdot\bm u - \frac{p}{\bulk - \bulk_p} &= 0, \qquad \text{in $\Omega$} \\ \bm{u} &= \bar{\bm u}, \quad \text{on $\partial \Omega^{D}$} \\ \bm \sigma \cdot \bm n &= \bar{\bm t}. \qquad \text{on $\partial \Omega^{N}$} \end{aligned} \]

with \(\bm n\) be the unit normal on the boundary and its weak formulation as:

(153)\[ \begin{aligned} \int_{\Omega}{ \nabla \bm{v} \tcolon \bm{\sigma}} \, dv - \int_{\partial \Omega}{\bm{v} \cdot \bar{\bm t}} \, da - \int_{\Omega}{\bm{v} \cdot \rho \bm{g}} \, dv &= 0, \quad \forall \bm v \in \mathcal V \\ \int_{\Omega} q \left( -\nabla\cdot\bm u - \frac{p}{\bulk - \bulk_p} \right) \, dv & = 0. \quad \forall q \in \mathcal Q \end{aligned} \]

Command-line interface

To enable the incompressible, mixed linear elastic model, use the model option -model elasticity-mixed and set the material parameters listed in Mixed linear elastic model options. Any parameter without a default option is required.

Table 21 Mixed linear elastic model options

Option

Description

Default Value

-model elasticity-mixed-linear

Required to enable the mixed linear elastic model.

-E [real]

Young’s modulus, \(E > 0\)

-nu [real]

Poisson’s ratio, \(\nu \leq 0.5\). Note, this model is only validated for \(\nu = 0.5\).

-nu_primal [real]

Primal part of the Poisson’s ratio for Jacobian operator, \(-1 \leq \nu_p < \nu \leq 0.5\). This parameter may improve solver performance and should not affect the solution.

-1.0

-nu_primal_pc [real]

Primal part of the Poisson’s ratio for preconditioner operator, \(-1 \leq \nu_{pc} < \nu \leq 0.5\). This parameter may improve solver performance and should not affect the solution.

-nu_primal value

An example using the mixed linear elastic model can be run via

$ ./bin/ratel-quasistatic -options_file examples/ymls/ex02-quasistatic-elasticity-mixed-linear-face-forces-pcjacobi.yml