Ratel: Extensible, performance-portable solid mechanics

Ratel is a solid mechanics library and applications based on libCEED and PETSc with support for efficient high-order elements and CUDA and ROCm GPUs.

Solid mechanics simulations provide vital information for many engineering applications, using a large amount of computational resources from workstation to supercomputing scales. The industry standard for implicit analysis uses assembled sparse matrices with low-order elements, typically \(Q_1\) hexahedral and \(P_2\) tetrahedral elements, with the linear systems solved using sparse direct solvers, algebraic multigrid, or multilevel domain decomposition. This approach has two fundamental inefficiencies: poor approximation accuracy per Degree of Freedom (DoF) and high computational and memory cost per DoF due to choice of data structures and algorithms. High-order finite elements implemented in a matrix-free fashion with appropriate preconditioning strategies can overcome these inefficiencies.

For further details on the benefits of high-order, matrix-free finite elements for solid mechanics, see our preprint on arXiv.

_images/logo.png

Fig. 1 Ratel badger moving simulation

Indices and tables

[CUD21]

Cuda. 2021. URL: https://developer.nvidia.com/about-cuda.

[Aba25]

Abaqus. 2025. URL: https://www.3ds.com/products/simulia/abaqus.

[AKBP21]

Bilen Emek Abali, Andre Klunker, Emilio Barchiesi, and Luca Placidi. A novel phase-field approach to brittle damage mechanics of gradient metamaterials combining action formalism and history variable. 2021.

[ABB+21a]

Ahmad Abdelfattah, Valeria Barra, Natalie Beams, Ryan Bleile, Jed Brown, Jean-Sylvain Camier, Robert Carson, Noel Chalmers, Veselin Dobrev, Yohann Dudouit, Paul Fischer, Ali Karakus, Stefan Kerkemeier, Tzanio Kolev, Yu-Hsiang Lan, Elia Merzari, Misun Min, Malachi Phillips, Thilina Rathnayake, Robert Rieben, Thomas Stitt, Ananias Tomboulides, Stanimire Tomov, Vladimir Tomov, Arturo Vargas, Timothy Warburton, and Kenneth Weiss. GPU algorithms for efficient exascale discretizations. Parallel Computing, 108:102841, 2021. arXiv:2109.05072, doi:10.1016/j.parco.2021.102841.

[ABB+21b]

Ahmad Abdelfattah, Valeria Barra, Natalie Beams, Jed Brown, Jean-Sylvain Camier, Veselin Dobrev, Yohann Dudouit, Leila Ghaffari, Tzanio Kolev, David Medina, Will Pazner, Thilina Rathnayake, Jeremy L Thompson, and Stanimire Tomov. Libceed user manual. March 2021. doi:10.5281/zenodo.4895340.

[AGDL15]

Marreddy Ambati, Tymofiy Gerasimov, and Laura De Lorenzis. A review on phase-field models of brittle fracture and a new fast hybrid formulation. Computational Mechanics, 55:383–405, 2015.

[AMM09]

Hanen Amor, Jean-Jacques Marigo, and Corrado Maurini. Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. Journal of the Mechanics and Physics of Solids, 57(8):1209–1229, 2009.

[AAB+21]

Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-Sylvain Camier, Jakub Cerveny, Veselin Dobrev, Yohann Dudouit, Aaron Fisher, Tzanio Kolev, Will Pazner, Mark Stowell, Vladimir Tomov, Ido Akkerman, Johann Dahm, David Medina, and Stefano Zampini. MFEM: A Modular Finite Element Methods Library. Computers \\& Mathematics with Applications, 81:42–74, January 2021. doi:10.1016/j.camwa.2020.06.009.

[ABD+21]

Daniel Arndt, Wolfgang Bangerth, Denis Davydov, Timo Heister, Luca Heltai, Martin Kronbichler, Matthias Maier, Jean-Paul Pelteret, Bruno Turcksin, and David Wells. The deal.II finite element library: Design, features, and insights. Computers & Mathematics with Applications, 81:407–422, January 2021. doi:10.1016/j.camwa.2020.02.022.

[AR09]

Douglas N Arnold and Marie E Rognes. Stability of lagrange elements for the mixed laplacian. Calcolo, 46(4):245–260, 2009. doi:10.1007/s10092-009-0009-6.

[BN75]

Halphen B. and Q. S. Nguyen. Sur les materiaux standard generalises. Journal de Mécanique, 14:39–63, 1975.

[BAA+25]

Satish Balay, Shrirang Abhyankar, Mark F. Adams, S. Bensor, Jed Brown, Peter Brune, Kris Buschelman, Lisandro Dalcin, Alp Dener, Victor Eijkhout, J. Faibussowitsch, William D. Gropp, V. Hapla, T. Isaac, P. Jolivet, and Dmitry Karpeyev, Dinesh Kaushik, Matthew G. Knepley, F. Kong, S. Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran Mills, L. Mitchell, Todd Munson, J. Roman, Karl Rupp, Patrick Sanan, J. Sarich, and Barry F. Smith, H. Suh, Stefano Zampini, Hong Zhang, Hong Zhang, and J. Zang. PETSc users manual. Technical Report ANL-95/11 - Revision 3.23, Argonne National Laboratory, 2025. doi:10.2172/2476320.

[BHL+16]

Michael J. Borden, Thomas Joseph Robert Hughes, Chad M. Landis, Amin Anvari, and Isaac J. Lee. A phase-field formulation for fracture in ductile materials: finite deformation balance law derivation, plastic degradation, and stress triaxiality effects. Computer Methods in Applied Mechanics and Engineering, 312:130–166, 2016. doi:10.1016/j.cma.2016.09.005.

[BPitkaranta84]

F. Brezzi and J. Pitkäranta. On the Stabilization of Finite Element Approximations of the Stokes Equations. In W. Hackbusch, editor, Efficient Solutions of Elliptic Systems: Proceedings of a GAMM-Seminar Kiel, January 27 to 29, 1984, pages 11–19. Vieweg+Teubner Verlag, Wiesbaden, 1984. doi:10.1007/978-3-663-14169-3\_2.

[BF12]

Franco Brezzi and Michel Fortin. Mixed and hybrid finite element methods. Volume 15. Springer Science & Business Media, 2012.

[BAB+21]

Jed Brown, Ahmad Abdelfattah, Valeria Barra, Natalie Beams, Jean-Sylvain Camier, Veselin Dobrev, Yohann Dudouit, Leila Ghaffari, Tzanio Kolev, David Medina, Will Pazner, Thilina Ratnayaka, Jeremy Thompson, and Stan Tomov. Libceed: fast algebra for high-order element-based discretizations. Journal of Open Source Software, 6(63):2945, 2021. URL: https://doi.org/10.21105/joss.02945, doi:10.21105/joss.02945.

[BBB+22]

Jed Brown, Valeria Barra, Natalie Beams, Leila Ghaffari, Matthew Knepley, William Moses, Rezgar Shakeri, Karen Stengel, Jeremy L. Thompson, and Junchao Zhang. Performance portable solid mechanics via matrix-free $p$-multigrid. 2022. URL: https://arxiv.org/abs/2204.01722, doi:10.48550/ARXIV.2204.01722.

[C94]

Miehe C. Aspects of the formulation and finite element implementation of large strain isotropic elasticity. International Journal for Numerical Methods in Engineering, 37(12):1981–2004, 1994. doi:10.1002/nme.1620371202.

[CB93]

D. Chapelle and K.J. Bathe. The inf-sup test. Computers & Structures, 47(4):537–545, 1993. URL: https://www.sciencedirect.com/science/article/pii/004579499390340J, doi:10.1016/0045-7949(93)90340-J.

[Che16]

Alexander Cheng. Poroelasticity. Springer Cham, Chichester New York, 2016. ISBN 978-3-319-25200-1. doi:10.1007/978-3-319-25202-5.

[Cla11]

J.D. Clayton. Nonlinear mechanics of crystals. Springer, 2011.

[Cla19]

J.D. Clayton. Nonlinear elastic and inelastic models for shock compression of crystalline solids. Springer, 2019.

[CN63]

B.D. Coleman and W. Noll. The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational Mechanics and Analysis, 13:167–178, 1963.

[CAB+20a]

William M. Coombs, Charles E. Augarde, Andrew J. Brennan, Michael J. Brown, Tim J. Charlton, Jonathan A. Knappett, Yousef Ghaffari Motlagh, and Lei Wang. On lagrangian mechanics and the implicit material point method for large deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 358:112622, January 2020. doi:10.1016/j.cma.2019.112622.

[CAB+20b]

William M. Coombs, Charles E. Augarde, Andrew J. Brennan, Michael J. Brown, Tim J. Charlton, Jonathan A. Knappett, Yousef Ghaffari Motlagh, and Lei Wang. On lagrangian mechanics and the implicit material point method for large deformation elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 358:112622, 2020. URL: https://www.sciencedirect.com/science/article/pii/S0045782519305043, doi:https://doi.org/10.1016/j.cma.2019.112622.

[Cro73]

J.J. Cross. Mixtures of fluids and isotropic solids. Archive of Mechanics, 6:1025–1039, 1973.

[Dav08]

L. Davison. Fundamentals of Shock Wave Propagation in Solids. Springer, 2008.

[DPA+20]

Denis Davydov, Jean-Paul Pelteret, Daniel Arndt, Martin Kronbichler, and Paul Steinmann. A matrix-free approach for finite-strain hyperelastic problems using geometric multigrid. International Journal for Numerical Methods in Engineering, 121(13):2874–2895, 2020. doi:10.1002/nme.6336.

[dB05]

R. de Boer. Trends in Continuum Mechanics of Porous Media: Theory and Applications of Transport in Porous Media. Springer, 2005.

[dBE88]

R. de Boer and W. Ehlers. A Historical Review of the Formulation of Porous Media Theories. Acta Mechanica, 74:1–8, 1988.

[dSNEARJ98]

Perić D. de Souza Neto E.A. and Owen R.J. Continuum modelling and numerical simulation of material damage at finite strains. Archives of Computational Methods in Engineering, 5(311):311–384, 1998. doi:10.1007/BF02905910.

[DCC13]

Boyang Ding, Alexander H.-D. Cheng, and Zhanglong Chen. Fundamental solutions of poroelastodynamics in frequency domain based on wave decomposition. Journal of Applied Mechanics, 80(6):061021, 08 2013. doi:10.1115/1.4023692.

[EH69]

Lee E.H. Elastic-plastic deformation at finite strains. Journal of Applied Mechanics, 36(1):65–76, 1969. doi:10.21236/ad0678483.

[Ehl02]

W. Ehlers. Foundations of multiphasic and porous materials. In W. Ehlers and J. Bluhm, editors, Porous Media: Theory, Experiments and Numerical Applications, pages 3–86. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. doi:10.1007/978-3-662-04999-0_1.

[EE99]

W. Ehlers and G. Eipper. Finite elastic deformations in liquid-saturated and empty porous solids. Transport in Porous Media, 34:179–191, March 1999.

[Eip98]

G. Eipper. Theorie und Numerik finiter elastischer Deformationen in fluidgesättigten porösen Medien [\textit Theory and Numerical analysis of finite elastic Deformations in fluid-saturated porous \\\textit Media]. PhD thesis, Institut für Mechanik (Bauwesen) der Universität Stuttgart [\textit Institute for Mechanics (Civil Engineering), University of Stuttgart], Stuttgart, Germany, 1998.

[EB90]

Adrian Luis Eterovic and Klaus-Jurgen Bathe. A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. International Journal for Numerical Methods in Engineering, 30(6):1099–1114, 1990.

[FLSjogreen+21]

Robert D Falgout, Ruipeng Li, Björn Sjögreen, Lu Wang, and Ulrike Meier Yang. Porting hypre to heterogeneous computer architectures: strategies and experiences. Parallel Computing, 108:102840, 2021. doi:10.1016/j.parco.2021.102840.

[FPS06]

Eduardo Fancello, Jean-Philippe Ponthot, and Laurent Stainier. A variational formulation of constitutive models and updates in non-linear finite viscoelasticity. International Journal for Numerical Methods in Engineering, 65(11):1831–1864, 2006.

[FPW15]

Philipp Farah, Alexander Popp, and Wolfgang A. Wall. Segment-based vs. element-based integration for mortar methods in computational contact mechanics. Computational Mechanics, 55(1):209–228, January 2015. doi:10.1007/s00466-014-1093-2.

[FHP19]

Erich L Foster, Kai Hormann, and Romeo Traian Popa. Clipping simple polygons with degenerate intersections. Computers & Graphics: X, 2:100007, December 2019. doi:10.1016/j.cagx.2019.100007.

[FM98]

Gilles A Francfort and J-J Marigo. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 46(8):1319–1342, 1998.

[FMS22]

Johannes Friedlein, Julia Mergheim, and Paul Steinmann. Observations on additive plasticity in the logarithmic strain space at excessive strains. International Journal of Solids and Structures, 239:111416, 2022.

[GOH05]

T. Christian Gasser, Ray W Ogden, and Gerhard A Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. Journal of The Royal Society Interface, 3(6):15–35, September 2005. doi:10.1098/rsif.2005.0073.

[GH98]

Günther Greiner and Kai Hormann. Efficient clipping of arbitrary polygons. ACM Trans. Graph., 17(2):71–83, April 1998. doi:10.1145/274363.274364.

[GFA10]

M.E. Gurtin, E. Fried, and L. Anand. The mechanics and thermodynamics of continua. Cambridge University Press, 2010. doi:10.1017/CBO9780511762956.

[Hol00]

Gerhard Holzapfel. Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester New York, 2000. ISBN 978-0-471-82319-3.

[Hug12]

Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis. Courier Corporation, 2012.

[Irw24]

Z.T. Irwin. A Multiphase Continuum Mechanics Model for Shock Loading of Soft Porous Materials. PhD thesis, University of Colorado Boulder, 2024.

[IRC23]

Z.T. Irwin, R.A. Regueiro, and J.D. Clayton. A Large Deformation Multiphase Continuum Mechanics Model for Shock Loading of Lung Parenchyma: Investigating the Effects of Fluid Viscous Stress. Technical Report ARL-TR-9815, DEVCOM Army Research Laboratory, Aberdeen Proving Ground MD, 2023. URL: https://apps.dtic.mil/sti/trecms/pdf/AD1214028.pdf.

[ICR24]

Zachariah T. Irwin, John D. Clayton, and Richard A. Regueiro. A large deformation multiphase continuum mechanics model for shock loading of soft porous materials. International Journal for Numerical Methods in Engineering, 125(6):e7411, 2024. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.7411, doi:https://doi.org/10.1002/nme.7411.

[JCRL85]

Simo J.C. and Taylor R.L. Consistent tangent operators for rate-independent elastoplasticity. Computer Methods in Applied Mechanics and Engineering, 48(1):101–118, 1985. doi:10.1016/0045-7825(85)90070-2.

[KFM+21]

Tzanio Kolev, Paul Fischer, Misun Min, Jack Dongarra, Jed Brown, Veselin Dobrev, Tim Warburton, Stanimire Tomov, Mark S. Shephard, Ahmad Abdelfattah, Valeria Barra, Natalie Beams, Jean-Sylvain Camier, Noel Chalmers, Yohann Dudouit, Ali Karakus, Ian Karlin, Stefan Kerkemeier, Yu-Hsiang Lan, David Medina, Elia Merzari, Aleksandr Obabko, Will Pazner, Thilina Rathnayake, Cameron W. Smith, Lukas Spies, Kasia Swirydowicz, Jeremy Thompson, Ananias Tomboulides, and Vladimir Tomov. Efficient exascale discretizations: high-order finite element methods. International Journal of High Performance Computing Applications, 2021. arXiv:2109.04996, doi:10.1177/10943420211020803.

[KSchluterMuller15]

Charlotte Kuhn, Alexander Schlüter, and Ralf Müller. On degradation functions in phase field fracture models. Computational Materials Science, 108:374–384, 2015.

[LMR81]

W. M. Lai, Van C. Mow, and V. Roth. Effects of Nonlinear Strain-Dependent Permeability and Rate of Compression on the Stress Behavior of Articular Cartilage. Journal of Biomechanical Engineering, 103:61–66, May 1981. doi:10.1115/1.3138261.

[LCSA22]

Marco Livesu, Gianmarco Cherchi, Riccardo Scateni, and Marco Attene. Deterministic linear time constrained triangulation using simplified earcut. IEEE Transactions on Visualization and Computer Graphics, 28(12):5172–5177, December 2022. doi:10.1109/TVCG.2021.3070046.

[LMW12]

Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of differential equations by the finite element method: The FEniCS book. Volume 84. Springer Science & Business Media, 2012. doi:10.1007/978-3-642-23099-8.

[Mar05]

B. Markert. Porous Media Viscoelasticity with Application to Polymeric Foams. PhD thesis, Institut für Mechanik (Bauwesen) Lehrstuhl für Kontinuumsmechanik der Univeät Stuttgart [\textit Institute for Mechanics (Civil Engineering), Chair of Continuum Mechanics, University of Stuttgart], 2005.

[MFPCL16]

Filipe Marques, Paulo Flores, J. C. Pimenta Claro, and Hamid M. Lankarani. A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dynamics, 86(3):1407–1443, November 2016. doi:10.1007/s11071-016-2999-3.

[MBP14]

Dave A. May, Jed Brown, and Laetitia Le Pourhiet. pTatin3D: High-performance methods for long-term lithospheric dynamics. In Proceedings of SC14: International Conference for High Performance Computing, Networking, Storage and Analysis. ACM, 2014. doi:10.1109/SC.2014.28.

[MAL02]

Christian Miehe, N Apel, and Matthias Lambrecht. Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials. Computer methods in applied mechanics and engineering, 191(47-48):5383–5425, 2002. doi:10.1016/S0045-7825(02)00438-3.

[MHW10]

Christian Miehe, Martina Hofacker, and Fabian Welschinger. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 199(45-48):2765–2778, 2010.

[MWH10]

Christian Miehe, Fabian Welschinger, and Martina Hofacker. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations. International journal for numerical methods in engineering, 83(10):1273–1311, 2010.

[Mli18]

Rabii Mlika. Nitsche method for frictional contact and self-contact: Mathematical and numerical study. phdthesis, Université de Lyon, Jan 2018. URL: https://theses.hal.science/tel-02067118.

[MDMuhlhaus03]

Louis Moresi, Frédéric Dufour, and H-B Mühlhaus. A lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials. Journal of computational physics, 184(2):476–497, 2003. doi:10.1016/S0021-9991(02)00031-1.

[MC20]

William Moses and Valentin Churavy. Instead of rewriting foreign code for machine learning, automatically synthesize fast gradients. In Advances in Neural Information Processing Systems (NeurIPS), volume 33, 12472–12485. 2020.

[MCP+21]

William S. Moses, Valentin Churavy, Ludger Paehler, Jan Hückelheim, Sri Hari Krishna Narayanan, Michel Schanen, and Johannes Doerfert. Reverse-mode automatic differentiation and optimization of gpu kernels via enzyme. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC '21. New York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/3458817.3476165.

[NEM16]

Patrizio Neff, Bernhard Eidel, and Robert J Martin. Geometry of logarithmic strain measures in solid mechanics. Archive for Rational Mechanics and Analysis, 222:507–572, 2016.

[NW99]

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer-Verlag, New York, 1999.

[NGD+14]

D. R. Nolan, A. L. Gower, M. Destrade, R. W. Ogden, and J. P. McGarry. A robust anisotropic hyperelastic formulation for the modelling of soft tissue. Journal of the Mechanical Behavior of Biomedical Materials, 39:48–60, November 2014. doi:10.1016/j.jmbbm.2014.06.016.

[Ogd97]

Raymond W Ogden. Non-linear elastic deformations. Courier Dover Publications, 1997.

[PD03]

D Peric and W Dettmer. A computational model for generalized inelastic materials at finite strains combining elastic, viscoelastic and plastic material behaviour. Engineering Computations, 20(5/6):768–787, 2003. doi:10.1108/02644400310488862.

[PDME92]

Owen D.R.J. Peric D. and Honnor M.E. A model for finite strain elasto-plasticity based on logarithmic strains: computational issues. Computer Methods in Applied Mechanics and Engineering, 94(61):35–61, 1992. doi:10.1016/0045-7825(92)90156-e.

[PL04]

Michael A. Puso and Tod A. Laursen. A mortar segment-to-segment frictional contact method for large deformations. Computer Methods in Applied Mechanics and Engineering, 193(45–47):4891–4913, November 2004. doi:10.1016/j.cma.2004.06.001.

[RG98]

Stefanie Reese and Sanjay Govindjee. A theory of finite viscoelasticity and numerical aspects. International journal of solids and structures, 35(26-27):3455–3482, 1998.

[RS97]

Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discrete & Computational Geometry, 18(3):305–363, October 1997. doi:10.1007/PL00009321.

[Rup20]

Karl Rupp. CPU-GPU-MIC comparision charts. 2020. URL: https://github.com/karlrupp/cpu-gpu-mic-comparison.

[SD03]

M. Schanz and S. Diebels. A comparative study of biot's theory and the linear theory of porous media for wave propagation problems. Acta Mechanica, 161:213–235, April 2003. doi:10.1007/s00707-002-0999-5.

[SGTB24]

Rezgar Shakeri, Leila Ghaffari, Jeremy L Thompson, and Jed Brown. Stable numerics for finite-strain elasticity. International Journal for Numerical Methods in Engineering, 125(21):e7563, 2024.

[Sim92]

Juan C Simo. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Computer Methods in Applied Mechanics and Engineering, 99(1):61–112, 1992.

[TanneLB+18]

Erwan Tanné, Tianyi Li, Blaise Bourdin, J-J Marigo, and Corrado Maurini. Crack nucleation in variational phase-field models of brittle fracture. Journal of the Mechanics and Physics of Solids, 110:80–99, 2018. doi:10.1016/j.jmps.2017.09.006.

[TLGA+22]

Christian R. Trott, Damien Lebrun-Grandié, Daniel Arndt, Jan Ciesko, Vinh Dang, Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman, Dan Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy Powell, Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno Turcksin, and Jeremiah Wilke. Kokkos 3: programming model extensions for the exascale era. IEEE Transactions on Parallel and Distributed Systems, 33(4):805–817, 2022. doi:10.1109/TPDS.2021.3097283.

[TZ06]

A. Truty and T. Zimmerman. Stabilized mixed finite element formulations for materially nonlinear partially saturated two-phase media. Computational Methods in Applied Mechanical Engineering, 195:1517–1546, February 2006.

[VDMO13]

Luigi Vergori, Michel Destrade, Patrick McGarry, and Ray W. Ogden. On anisotropic elasticity and questions concerning its finite element implementation. Computational Mechanics, 52(5):1185–1197, November 2013. doi:10.1007/s00466-013-0871-6.

[WG12]

Andrea Walther and Andreas Griewank. Getting started with adol-c. Computing in Science & Engineering, 14(6):20–29, 2012.

[WA90]

Gustavo Weber and Lallit Anand. Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Computer Methods in Applied Mechanics and Engineering, 79(2):173–202, 1990.

[WWP09]

Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual performance model for multicore architectures. Communications of the ACM, 52(4):65–76, 2009. doi:10.1145/1498765.1498785.

[ZBB+21]

Junchao Zhang, Jed Brown, Satish Balay, Jacob Faibussowitsch, Matthew Knepley, Oana Marin, Richard Tran Mills, Todd Munson, Barry F Smith, and Stefano Zampini. The PetscSF scalable communication layer. IEEE Transactions on Parallel and Distributed Systems, 2021. arXiv:2102.13018, doi:10.1109/TPDS.2021.3084070.