Neo-Hookean Isochoric-split
The Neo-Hookean decoupled strain energy function is in terms of \(J\) and modified invariant \(\mathbb{\bar{I}}_1\)
(59)\[
\begin{aligned}
\psi \left(\bm{C} \right) &= \psi_{\text{vol}}(J) + \psi_{\text{iso}}(\bar{\bm{C}})\\
&=\bulk \, V(J) + \frac \secondlame 2 \left( \mathbb{\bar{I}_1} - 3 \right).
\end{aligned}
\]
where \(\bulk\) is the bulk modulus of the material and \(V(J)\) is a strictly convex function.
One approach to obtain mixed formulation is to consider the hydrostatic pressure \(-\frac{\trace \bm \sigma}{3}\) as a variable, where in terms of energy is
(60)\[
\begin{aligned}
p_{\text{hyd}} = - \frac{\trace \bm \sigma}{3} &= -\frac{1}{3J} \trace (\bm F \bm S \bm{F}^T) = -\frac{1}{3J} \trace (\bm S \bm F^T \bm F) = -\frac{1}{3J} \trace (\bm S \bm C) \\
&= -\frac{1}{3J} \trace \left( \frac{\partial \psi_{\text{vol}}}{\partial J} ~ J \bm{I} + \sum_{i=1}^3 \frac{\partial \psi_{\text{iso}}}{\partial \mathbb{\bar{I}}_i} \frac{\partial \mathbb{\bar{I}}_i}{\partial \bm E} \bm C \right) \\
&= - \frac{\partial \psi_{\text{vol}}}{\partial J} = -\bulk \frac{\partial V(J)}{\partial J} = -\bulk V',
\end{aligned}
\]
where we have used \(\trace (\bm A \bm B) = \trace (\bm B \bm A)\) and
\[
\begin{aligned}
\trace \left( \frac{\partial \mathbb{\bar{I}}_1}{\partial \bm E} \bm C \right) &= 2 J^{-2/3} \trace\left( \bm C -\frac{1}{3} \mathbb{I}_1 \bm{I} \right) = 0, \\
\trace \left( \frac{\partial \mathbb{\bar{I}}_2}{\partial \bm E} \bm C \right) &= 2 J^{-4/3} \trace \left( \mathbb{I}_1 \bm C - \bm C^2 - \frac{2}{3} \mathbb{I}_2 \bm{I} \right) = 0, \\
\trace \left( \frac{\partial \mathbb{\bar{I}}_3}{\partial \bm E} \bm C \right) &= 0.
\end{aligned}
\]
However, we define a pressure-like variable similar to mixed linear elasticity (48) in terms of bulk and primal bulk (49) moduli
(61)\[
p = - (\bulk - \bulk_p) \frac{\partial V}{\partial J} = p_{\text{hyd}} + \bulk_p \frac{\partial V}{\partial J},
\]
and considered it as independent field variable in our mixed hyperelastic formulation.
The second Piola-Kirchoff tensor is computed via (38)
(62)\[
\begin{aligned}
\bm{S} = \frac{\partial \psi}{\partial \bm{E}} &= \underbrace{\frac{\partial \psi_{\text{vol}}}{\partial J}}_{-p_{\text{hyd}}} \frac{\partial J}{\partial \bm{E}} + \frac{\partial \psi}{\partial \mathbb{\bar{I}_1}} \frac{\partial \mathbb{\bar{I}_1}}{\partial \bm{E}} =\bm{S}_{\text{vol}} + \bm{S}_{\text{iso}}\\
&= \left(\bulk_p J \, V' - p \, J \right) \bm{C}^{-1} + \secondlame J^{-2/3}\left( \bm{I} - \frac{1}{3}\mathbb{{I}_1}\bm{C}^{-1} \right).
\end{aligned}
\]
where the invariants are defined in (25) and (37) and we have used (40), (39), and (41).
Tip
In our simulation we use the stable version of (62) as
(63)\[
\bm{S} = \left(\bulk_p J \, V' - p \, J \right) \bm{C}^{-1} + 2 \secondlame J^{-2/3} \bm{C}^{-1} \bm{E}_{\text{dev}},
\]
where \(\bm{E}_{\text{dev}} = \bm{E} - \frac{1}{3}\trace \bm{E} \, \bm{I} \) is the deviatoric part of Green-Lagrange strain tensor.
The isochoric Neo-Hookean stress relation can be represented in current configuration by pushing forward (62) using (22)
(64)\[
\bm{\tau} = \bm{F}\bm{S}\bm{F}^T = \left(\bulk_p J \, V' - p \, J \right) \bm{I} + \secondlame J^{-2/3}\left( \bm{b} - \frac{1}{3}\mathbb{{I}_1} \bm{I} \right).
\]
Tip
In our simulation we use the stable version of Kirchhoff stress tensor (64) as
(65)\[
\bm{\tau} = \left(\bulk_p J \, V' - p \, J \right) \bm{I} + 2 \secondlame J^{-2/3} \bm{e}_{\text{dev}}
\]
where \(\bm{e}_{\text{dev}} = \bm{e} - \frac{1}{3}\trace \bm{e} \, \bm{I} \) is the deviatoric part of Green-Euler strain tensor
Note
We can solve the isochoric model with single field displacement if the material is not incompressible which leads to the second Piola-Kirchoff tensor
(66)\[
\begin{aligned}
\bm{S} = \frac{\partial \psi}{\partial \bm{E}} &= \frac{\partial \psi_{\text{vol}}}{\partial J} \frac{\partial J}{\partial \bm{E}} + \frac{\partial \psi}{\partial \mathbb{\bar{I}_1}} \frac{\partial \mathbb{\bar{I}_1}}{\partial \bm{E}} =\bm{S}_{\text{vol}} + \bm{S}_{\text{iso}}\\
&= \bulk J \, V' \, \bm{C}^{-1} + \secondlame J^{-2/3}\left( \bm{I} - \frac{1}{3}\mathbb{{I}_1}\bm{C}^{-1} \right).
\end{aligned}
\]
and the kirchoff stress
(67)\[
\bm{\tau} = \bm{F}\bm{S}\bm{F}^T = \bulk J \, V' \, \bm{I} + \secondlame J^{-2/3}\left( \bm{b} - \frac{1}{3}\mathbb{{I}_1} \bm{I} \right).
\]
Note that the stable form of the above stresses can be derived similar to (63), and (65).